
Design and Analysis of Algorithm
Basics of Complexity Theory

1 Decision Problem

2 Deterministic Computation

3 Several Important Complexity Classes
P vs. NP
NP-complete

4 Randomized Computation
BPP

1 / 51

Outline

1 Decision Problem

2 Deterministic Computation

3 Several Important Complexity Classes
P vs. NP
NP-complete

4 Randomized Computation
BPP

2 / 51

Decision Problem

Decision Problem: recognition of a set of strings L ⊆ X

X: a set of strings
x: a string in X (each string corresponds to an instance)
L: language (a subset of X satisfying some property)

X

L Task: Decide membership — if x ∈ L

Example
X = N
L are Primes = {2, 3, 5, 7, 11, 13, . . . }
decide if x is a prime.

3 / 51

Decision Problem

Decision Problem: recognition of a set of strings L ⊆ X

X: a set of strings
x: a string in X (each string corresponds to an instance)
L: language (a subset of X satisfying some property)

X

L Task: Decide membership — if x ∈ L

Example
X = N
L are Primes = {2, 3, 5, 7, 11, 13, . . . }
decide if x is a prime.

3 / 51

Motivation for Complexity Theory

We always want to know if a given problem can be efficiently
solved by an algorithm.

1 Precisely model algorithms
What is computation?
What is computable?

2 Precisely define what does it means for efficient.

4 / 51

Motivation for Complexity Theory

We always want to know if a given problem can be efficiently
solved by an algorithm.

1 Precisely model algorithms
What is computation?
What is computable?

2 Precisely define what does it means for efficient.

4 / 51

Outline

1 Decision Problem

2 Deterministic Computation

3 Several Important Complexity Classes
P vs. NP
NP-complete

4 Randomized Computation
BPP

5 / 51

Turing Machine

1936, London Mathematical Society: On computable numbers,
with an application to the Entscheidungs Problem.

Figure: Alan Turing

6 / 51

Turing Machine

Turing machine: automatic machine that has a tape (divided into
infinite cells), a control unit and a read/write head.

. . . b b a a 1 0 . . .

input/output tape

Finite Control Unit

qi qj
action

At the beginning, the tape contains the input in several cells.
Other places are empty.
During computation, the control unit monitor current state
and the head value, can do the following operations:

1 wipe off old value and write new values
2 change the current state
3 move head left or right

7 / 51

Turing Machine

Turing machine: automatic machine that has a tape (divided into
infinite cells), a control unit and a read/write head.

. . . b b a a 1 0 . . .

input/output tape

Finite Control Unit

qi qj
action

At the beginning, the tape contains the input in several cells.
Other places are empty.

During computation, the control unit monitor current state
and the head value, can do the following operations:

1 wipe off old value and write new values
2 change the current state
3 move head left or right

7 / 51

Turing Machine

Turing machine: automatic machine that has a tape (divided into
infinite cells), a control unit and a read/write head.

. . . b b a a 1 0 . . .

input/output tape

Finite Control Unit

qi qj
action

At the beginning, the tape contains the input in several cells.
Other places are empty.
During computation, the control unit monitor current state
and the head value, can do the following operations:

1 wipe off old value and write new values
2 change the current state
3 move head left or right

7 / 51

An Example

. . . b b a a 1 0 . . .

input/output tape

Finite Control Unit

q1 q2
a : b/L

a→ b; move left; current state q1 → q2

. . . b b b a 1 0 . . .

input/output tape

Finite Control Unit

q1 q2
a : b/L

8 / 51

An Example

. . . b b a a 1 0 . . .

input/output tape

Finite Control Unit

q1 q2
a : b/L

a→ b; move left; current state q1 → q2

. . . b b b a 1 0 . . .

input/output tape

Finite Control Unit

q1 q2
a : b/L

8 / 51

An Example

. . . b b a a 1 0 . . .

input/output tape

Finite Control Unit

q1 q2
a : b/L

a→ b; move left; current state q1 → q2

. . . b b b a 1 0 . . .

input/output tape

Finite Control Unit

q1 q2
a : b/L

8 / 51

Intuition of Turing Machine

Mimic how human being solve a problem

TM has a finite number of states (memory)

TM is provided a tape, which contains infinite cells (paper)

a symbol can be scanned from a cell or printed to a cell
(reading and writing)

9 / 51

Intuition of Turing Machine

Mimic how human being solve a problem

TM has a finite number of states (memory)

TM is provided a tape, which contains infinite cells (paper)

a symbol can be scanned from a cell or printed to a cell
(reading and writing)

9 / 51

Intuition of Turing Machine

Mimic how human being solve a problem

TM has a finite number of states (memory)

TM is provided a tape, which contains infinite cells (paper)

a symbol can be scanned from a cell or printed to a cell
(reading and writing)

9 / 51

Intuition of Turing Machine

Mimic how human being solve a problem

TM has a finite number of states (memory)

TM is provided a tape, which contains infinite cells (paper)

a symbol can be scanned from a cell or printed to a cell
(reading and writing)

9 / 51

Formal Definition

Definition 1 (Turing Machine)
TM consists (Q,Σ,Γ, δ, q0, qacc, qrej)

Q: a finite set of states
Σ: input alphabets
Γ: working alphabets (including ⊥, Σ ⊆ Γ)
q0: the initial state of Q;
qacc, qrej: accept and reject state of Q
δ: transition function

δ : (Q\{qacc, qrej})× Γ→ Q× Γ× {L,R}

10 / 51

Running Time of TM

Definition 2
We denote the running time of TM by tM (n), which is the
maximum steps that TM runs on all inputs of length n

Polynomial Time⋃
k∈N

TIME(nk)

11 / 51

The Extended Church-Turing Thesis

Figure: Alonzo Church & Alan Turing

Everyone’s intuition of Efficient Algorithms = Polynomial-Time
deterministic TMs

12 / 51

Non-deterministic Turing Machine

Non-deterministic TMs are just like standard TMs, except:

1 NDTM may proceed according to several possible transitions
We can assume that every configuration leads to two possible
configurations.

2 NDTM accepts iff there exists at least one of its branches
accepts.

NDTM doesn’t really correspond to any real-world physical
model, it’s just a theoretical construction.

Non-determinism doesn’t give TM any power to recognize more
languages.

Any NDTM can be simulated by a TM (with potentially
exponential time overhead) by trying all branches of the
NDTM machine “in parallel” by using BFS.

13 / 51

Non-deterministic Turing Machine

Non-deterministic TMs are just like standard TMs, except:
1 NDTM may proceed according to several possible transitions

We can assume that every configuration leads to two possible
configurations.

2 NDTM accepts iff there exists at least one of its branches
accepts.

NDTM doesn’t really correspond to any real-world physical
model, it’s just a theoretical construction.

Non-determinism doesn’t give TM any power to recognize more
languages.

Any NDTM can be simulated by a TM (with potentially
exponential time overhead) by trying all branches of the
NDTM machine “in parallel” by using BFS.

13 / 51

Non-deterministic Turing Machine

Non-deterministic TMs are just like standard TMs, except:
1 NDTM may proceed according to several possible transitions

We can assume that every configuration leads to two possible
configurations.

2 NDTM accepts iff there exists at least one of its branches
accepts.

NDTM doesn’t really correspond to any real-world physical
model, it’s just a theoretical construction.

Non-determinism doesn’t give TM any power to recognize more
languages.

Any NDTM can be simulated by a TM (with potentially
exponential time overhead) by trying all branches of the
NDTM machine “in parallel” by using BFS.

13 / 51

Non-deterministic Turing Machine

Non-deterministic TMs are just like standard TMs, except:
1 NDTM may proceed according to several possible transitions

We can assume that every configuration leads to two possible
configurations.

2 NDTM accepts iff there exists at least one of its branches
accepts.

NDTM doesn’t really correspond to any real-world physical
model, it’s just a theoretical construction.

Non-determinism doesn’t give TM any power to recognize more
languages.

Any NDTM can be simulated by a TM (with potentially
exponential time overhead) by trying all branches of the
NDTM machine “in parallel” by using BFS.

13 / 51

Non-deterministic Turing Machine

Non-deterministic TMs are just like standard TMs, except:
1 NDTM may proceed according to several possible transitions

We can assume that every configuration leads to two possible
configurations.

2 NDTM accepts iff there exists at least one of its branches
accepts.

NDTM doesn’t really correspond to any real-world physical
model, it’s just a theoretical construction.

Non-determinism doesn’t give TM any power to recognize more
languages.

Any NDTM can be simulated by a TM (with potentially
exponential time overhead) by trying all branches of the
NDTM machine “in parallel” by using BFS.

13 / 51

Notes

Some important facts about TM

1 Any TM can be encoded as {0, 1}∗.

2 Any {0, 1}∗ represents some TM.

3 Any TM has many representations in the form of {0, 1}∗.

Why TMs are so powerful?

TM has a working tape (好记性不如烂笔头)

TM itself can be treated as data! TM can take another TM
as its input.

14 / 51

Notes

Some important facts about TM

1 Any TM can be encoded as {0, 1}∗.

2 Any {0, 1}∗ represents some TM.

3 Any TM has many representations in the form of {0, 1}∗.

Why TMs are so powerful?

TM has a working tape (好记性不如烂笔头)

TM itself can be treated as data! TM can take another TM
as its input.

14 / 51

Notes

Some important facts about TM

1 Any TM can be encoded as {0, 1}∗.

2 Any {0, 1}∗ represents some TM.

3 Any TM has many representations in the form of {0, 1}∗.

Why TMs are so powerful?

TM has a working tape (好记性不如烂笔头)

TM itself can be treated as data! TM can take another TM
as its input.

14 / 51

Notes

Some important facts about TM

1 Any TM can be encoded as {0, 1}∗.

2 Any {0, 1}∗ represents some TM.

3 Any TM has many representations in the form of {0, 1}∗.

Why TMs are so powerful?

TM has a working tape (好记性不如烂笔头)

TM itself can be treated as data! TM can take another TM
as its input.

14 / 51

Notes

Some important facts about TM

1 Any TM can be encoded as {0, 1}∗.

2 Any {0, 1}∗ represents some TM.

3 Any TM has many representations in the form of {0, 1}∗.

Why TMs are so powerful?

TM has a working tape (好记性不如烂笔头)

TM itself can be treated as data! TM can take another TM
as its input.

14 / 51

Notes

Some important facts about TM

1 Any TM can be encoded as {0, 1}∗.

2 Any {0, 1}∗ represents some TM.

3 Any TM has many representations in the form of {0, 1}∗.

Why TMs are so powerful?

TM has a working tape (好记性不如烂笔头)

TM itself can be treated as data! TM can take another TM
as its input.

14 / 51

Notes

Some important facts about TM

1 Any TM can be encoded as {0, 1}∗.

2 Any {0, 1}∗ represents some TM.

3 Any TM has many representations in the form of {0, 1}∗.

Why TMs are so powerful?

TM has a working tape (好记性不如烂笔头)

TM itself can be treated as data! TM can take another TM
as its input.

14 / 51

Universal TM

universal TM
x

M
M(x)

||

a, b

cal.app
a× b = c

15 / 51

Universal TM

universal TM
x

M
M(x)

||

a, b

cal.app
a× b = c

15 / 51

Universal TM

universal TM
x

M
M(x)

||

a, b

cal.app
a× b = c

15 / 51

Outline

1 Decision Problem

2 Deterministic Computation

3 Several Important Complexity Classes
P vs. NP
NP-complete

4 Randomized Computation
BPP

16 / 51

Outline

1 Decision Problem

2 Deterministic Computation

3 Several Important Complexity Classes
P vs. NP
NP-complete

4 Randomized Computation
BPP

17 / 51

Time Complexity Hierarchy: P and NP

We have introduced
the notion of decision problems L ⊆ X

the concept of (non-deterministic) TM

We say a TM M accepts (“1” signify acceptance) a language L if:

x ∈ L ⇐⇒ M(x) = 1

L is decidable by M (M solves L)

Next, we introduce two important sets of problems, characterized
by time complexity by DTM and NDTM:

P and NP

18 / 51

Time Complexity Hierarchy: P and NP

We have introduced
the notion of decision problems L ⊆ X

the concept of (non-deterministic) TM
We say a TM M accepts (“1” signify acceptance) a language L if:

x ∈ L ⇐⇒ M(x) = 1

L is decidable by M (M solves L)

Next, we introduce two important sets of problems, characterized
by time complexity by DTM and NDTM:

P and NP

18 / 51

Time Complexity Hierarchy: P and NP

We have introduced
the notion of decision problems L ⊆ X

the concept of (non-deterministic) TM
We say a TM M accepts (“1” signify acceptance) a language L if:

x ∈ L ⇐⇒ M(x) = 1

L is decidable by M (M solves L)

Next, we introduce two important sets of problems, characterized
by time complexity by DTM and NDTM:

P and NP

18 / 51

P Complexity

Definition 3 (P Language)
L ∈ P if there exists a deterministic poly-time TM M such that

M(x) = 1 ⇐⇒ x ∈ L

poly-time: take at most p(n) steps, where p(·) is some
polynomial and n is the length of input

P =
⋃
k∈N

TIME(nk)

Example of P Languages
L = {even integers}, M just need to check if the last bit is 0.
L = PRIME, M is the AKS primality test algorithm.

19 / 51

P Complexity

Definition 3 (P Language)
L ∈ P if there exists a deterministic poly-time TM M such that

M(x) = 1 ⇐⇒ x ∈ L

poly-time: take at most p(n) steps, where p(·) is some
polynomial and n is the length of input

P =
⋃
k∈N

TIME(nk)

Example of P Languages
L = {even integers}, M just need to check if the last bit is 0.
L = PRIME, M is the AKS primality test algorithm.

19 / 51

P Complexity

Definition 3 (P Language)
L ∈ P if there exists a deterministic poly-time TM M such that

M(x) = 1 ⇐⇒ x ∈ L

poly-time: take at most p(n) steps, where p(·) is some
polynomial and n is the length of input

P =
⋃
k∈N

TIME(nk)

Example of P Languages
L = {even integers}, M just need to check if the last bit is 0.
L = PRIME, M is the AKS primality test algorithm.

19 / 51

P Complexity

Definition 3 (P Language)
L ∈ P if there exists a deterministic poly-time TM M such that

M(x) = 1 ⇐⇒ x ∈ L

poly-time: take at most p(n) steps, where p(·) is some
polynomial and n is the length of input

P =
⋃
k∈N

TIME(nk)

Example of P Languages
L = {even integers}, M just need to check if the last bit is 0.
L = PRIME, M is the AKS primality test algorithm.

19 / 51

NP Complexity

Definition 4 (NP Languages - Conventional)
L ∈ NP if there exists a non-deterministic poly-time TM M :

x ∈ L ⇐⇒ M(x) = 1

NP =
⋃
k∈N

NTIME(nk)

Alert
NP means non-deterministic poly-time, not non-poly-time!

20 / 51

NP Complexity

Definition 4 (NP Languages - Conventional)
L ∈ NP if there exists a non-deterministic poly-time TM M :

x ∈ L ⇐⇒ M(x) = 1

NP =
⋃
k∈N

NTIME(nk)

Alert
NP means non-deterministic poly-time, not non-poly-time!

20 / 51

Modern Definition

Definition 5 (NP Complexity - Modern)
L ∈ NP if there exists a deterministic poly-time TM M :

x ∈ L ⇐⇒ ∃w ∈ {0, 1}poly(n) s.t. M(x,w) = 1

If M(x,w) = 1, w is called as a “witness” for x ∈ L. One can
think of w as an efficiently-verifiable “certificate” or “proof”
for x ∈ L.
We require w is short, i.e, |w| = poly(n). This is natural since
M runs in poly-time in n.

L ∈ NP iff there are short proofs for membership in L.
Equivalence between traditional and modern definitions

Even though M is a deterministic machine, its second
argument w captures the nondeterminism in the definition.

21 / 51

Modern Definition

Definition 5 (NP Complexity - Modern)
L ∈ NP if there exists a deterministic poly-time TM M :

x ∈ L ⇐⇒ ∃w ∈ {0, 1}poly(n) s.t. M(x,w) = 1

If M(x,w) = 1, w is called as a “witness” for x ∈ L. One can
think of w as an efficiently-verifiable “certificate” or “proof”
for x ∈ L.

We require w is short, i.e, |w| = poly(n). This is natural since
M runs in poly-time in n.

L ∈ NP iff there are short proofs for membership in L.
Equivalence between traditional and modern definitions

Even though M is a deterministic machine, its second
argument w captures the nondeterminism in the definition.

21 / 51

Modern Definition

Definition 5 (NP Complexity - Modern)
L ∈ NP if there exists a deterministic poly-time TM M :

x ∈ L ⇐⇒ ∃w ∈ {0, 1}poly(n) s.t. M(x,w) = 1

If M(x,w) = 1, w is called as a “witness” for x ∈ L. One can
think of w as an efficiently-verifiable “certificate” or “proof”
for x ∈ L.
We require w is short, i.e, |w| = poly(n). This is natural since
M runs in poly-time in n.

L ∈ NP iff there are short proofs for membership in L.
Equivalence between traditional and modern definitions

Even though M is a deterministic machine, its second
argument w captures the nondeterminism in the definition.

21 / 51

Modern Definition

Definition 5 (NP Complexity - Modern)
L ∈ NP if there exists a deterministic poly-time TM M :

x ∈ L ⇐⇒ ∃w ∈ {0, 1}poly(n) s.t. M(x,w) = 1

If M(x,w) = 1, w is called as a “witness” for x ∈ L. One can
think of w as an efficiently-verifiable “certificate” or “proof”
for x ∈ L.
We require w is short, i.e, |w| = poly(n). This is natural since
M runs in poly-time in n.

L ∈ NP iff there are short proofs for membership in L.

Equivalence between traditional and modern definitions
Even though M is a deterministic machine, its second
argument w captures the nondeterminism in the definition.

21 / 51

Modern Definition

Definition 5 (NP Complexity - Modern)
L ∈ NP if there exists a deterministic poly-time TM M :

x ∈ L ⇐⇒ ∃w ∈ {0, 1}poly(n) s.t. M(x,w) = 1

If M(x,w) = 1, w is called as a “witness” for x ∈ L. One can
think of w as an efficiently-verifiable “certificate” or “proof”
for x ∈ L.
We require w is short, i.e, |w| = poly(n). This is natural since
M runs in poly-time in n.

L ∈ NP iff there are short proofs for membership in L.
Equivalence between traditional and modern definitions

Even though M is a deterministic machine, its second
argument w captures the nondeterminism in the definition.

21 / 51

Examples of NP Language - Composites

L = COMPOSITE
instance x is an integer
a witness w for x ∈ L is a non-trivial factor of x
M just need to check if w divides x, which could be done in
polynomial time.

Example of COMPOSITE
instance: 15

witness: 3, 5

In fact, COMPOSITE also belong to P (think why?)

22 / 51

Examples of NP Language - Composites

L = COMPOSITE
instance x is an integer
a witness w for x ∈ L is a non-trivial factor of x
M just need to check if w divides x, which could be done in
polynomial time.

Example of COMPOSITE
instance: 15

witness: 3, 5

In fact, COMPOSITE also belong to P (think why?)

22 / 51

Examples of NP Language - Composites

L = COMPOSITE
instance x is an integer
a witness w for x ∈ L is a non-trivial factor of x
M just need to check if w divides x, which could be done in
polynomial time.

Example of COMPOSITE
instance: 15

witness: 3, 5

In fact, COMPOSITE also belong to P (think why?)

22 / 51

Examples of NP Language - SAT and 3-SAT

SAT: Given a CNF formula Φ, check if it has a satisfying truth
assignment.
3-SAT: SAT where each clause contains exactly 3 literals
witness: an assignment of truth values to the Boolean variables

Example of 3-SAT
instance Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

witness: x1 = 1, x2 = 1, x3 = 0, x4 = 0

23 / 51

Examples of NP Language - SAT and 3-SAT

SAT: Given a CNF formula Φ, check if it has a satisfying truth
assignment.
3-SAT: SAT where each clause contains exactly 3 literals
witness: an assignment of truth values to the Boolean variables

Example of 3-SAT
instance Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

witness: x1 = 1, x2 = 1, x3 = 0, x4 = 0

23 / 51

Examples of NP Language - Hamilton Path

Hamilton Graph: Given an undirected graph G = (V,E), does
there exists a simple path that visits every node?

Figure: Hamiltonian Graph (a path traverses through each verticals
exactly once)

witness: a path
M check if the path contains each node in V exactly once

24 / 51

P vs. NP

As per definition, P ⊆ NP . Because L ∈ P ⇒ L ∈ NP :
M ′(x,w) can always sets w = ⊥ and decide whether x ∈ L
using M .
Alternatively, “short” M can be viewed as a witness for
x ∈ L. Think about why the description of M is short?

P = the set of decision problems whose all instances can be
efficiently decided
NP = the set of decision problems whose yes instances can
be efficiently decided with short proofs

1971: Cook, Edmonds, Levin, Yablonski, Gödel

Perhaps the most prominent question in TCS:

P =?NP

25 / 51

P vs. NP

As per definition, P ⊆ NP . Because L ∈ P ⇒ L ∈ NP :
M ′(x,w) can always sets w = ⊥ and decide whether x ∈ L
using M .
Alternatively, “short” M can be viewed as a witness for
x ∈ L. Think about why the description of M is short?

P = the set of decision problems whose all instances can be
efficiently decided
NP = the set of decision problems whose yes instances can
be efficiently decided with short proofs

1971: Cook, Edmonds, Levin, Yablonski, Gödel

Perhaps the most prominent question in TCS:

P =?NP

25 / 51

P vs. NP

As per definition, P ⊆ NP . Because L ∈ P ⇒ L ∈ NP :
M ′(x,w) can always sets w = ⊥ and decide whether x ∈ L
using M .
Alternatively, “short” M can be viewed as a witness for
x ∈ L. Think about why the description of M is short?

P = the set of decision problems whose all instances can be
efficiently decided
NP = the set of decision problems whose yes instances can
be efficiently decided with short proofs

1971: Cook, Edmonds, Levin, Yablonski, Gödel

Perhaps the most prominent question in TCS:

P =?NP

25 / 51

P = NP

P = NP

26 / 51

If P = NP

The foundation of modern cryptography collapse!

Cryptography as we know it may be impossible. Cryptographic
researchers are out of job.
In principle, every aspect of life could be efficiently and globally
optimized · · ·

· · · life as we know it would be different!

27 / 51

If P = NP

The foundation of modern cryptography collapse!

Cryptography as we know it may be impossible. Cryptographic
researchers are out of job.

In principle, every aspect of life could be efficiently and globally
optimized · · ·

· · · life as we know it would be different!

27 / 51

If P = NP

The foundation of modern cryptography collapse!

Cryptography as we know it may be impossible. Cryptographic
researchers are out of job.
In principle, every aspect of life could be efficiently and globally
optimized · · ·

· · · life as we know it would be different!
27 / 51

The Consequence of P = NP

P = NP ⇒ OWF does not exist

Let f : {0, 1}n → {0, 1}m. To efficiently find a pre-image x of y,
the idea is to determine x bit-by-bit. f(x1|| · · · ||xn) = y.
Define a collection of languages Li = {(y, z)|∃w s.t. y = f(z||w)},
where z ∈ {0, 1}i, w ∈ {0, 1}n−i

clearly Li ∈ NP and thus also belong to P by assumption, we
define algorithm Invert as:

Algorithm 1: Invert(y)
1: z = ϵ;
2: for i← 1 to n do
3: if (y, z||0) ∈ Li then z = z||0;
4: else z = z||1;
5: end
6: return z

28 / 51

The Consequence of P = NP

P = NP ⇒ OWF does not exist

Let f : {0, 1}n → {0, 1}m. To efficiently find a pre-image x of y,
the idea is to determine x bit-by-bit. f(x1|| · · · ||xn) = y.

Define a collection of languages Li = {(y, z)|∃w s.t. y = f(z||w)},
where z ∈ {0, 1}i, w ∈ {0, 1}n−i

clearly Li ∈ NP and thus also belong to P by assumption, we
define algorithm Invert as:

Algorithm 2: Invert(y)
1: z = ϵ;
2: for i← 1 to n do
3: if (y, z||0) ∈ Li then z = z||0;
4: else z = z||1;
5: end
6: return z

28 / 51

The Consequence of P = NP

P = NP ⇒ OWF does not exist

Let f : {0, 1}n → {0, 1}m. To efficiently find a pre-image x of y,
the idea is to determine x bit-by-bit. f(x1|| · · · ||xn) = y.
Define a collection of languages Li = {(y, z)|∃w s.t. y = f(z||w)},
where z ∈ {0, 1}i, w ∈ {0, 1}n−i

clearly Li ∈ NP and thus also belong to P by assumption, we
define algorithm Invert as:

Algorithm 3: Invert(y)
1: z = ϵ;
2: for i← 1 to n do
3: if (y, z||0) ∈ Li then z = z||0;
4: else z = z||1;
5: end
6: return z

28 / 51

The Consequence of P = NP

P = NP ⇒ OWF does not exist

Let f : {0, 1}n → {0, 1}m. To efficiently find a pre-image x of y,
the idea is to determine x bit-by-bit. f(x1|| · · · ||xn) = y.
Define a collection of languages Li = {(y, z)|∃w s.t. y = f(z||w)},
where z ∈ {0, 1}i, w ∈ {0, 1}n−i

clearly Li ∈ NP and thus also belong to P by assumption, we
define algorithm Invert as:

Algorithm 4: Invert(y)
1: z = ϵ;
2: for i← 1 to n do
3: if (y, z||0) ∈ Li then z = z||0;
4: else z = z||1;
5: end
6: return z

28 / 51

The Reverse Direction

OWF exists ⇒ P ̸= NP
We have many candidates of OWFs, but they require
assumptions.

Warning
OWFs do not exist does not imply P = NP

29 / 51

The Reverse Direction

OWF exists ⇒ P ̸= NP
We have many candidates of OWFs, but they require
assumptions.

Warning
OWFs do not exist does not imply P = NP

29 / 51

Consensus

P NP

30 / 51

Evidence for P ⊂ NP

Consensus opinion: P ̸= NP

Because NP contains many languages that are not believed
to be in P, such as: 3-SAT and Hamiltonian graph.

Q: How to solve an instance of 3-SAT with n variables?
Exhaustive search: try all 2n truth assignments.

Q: Can we do anything substantially more clever?
Conjecture: No poly-time algorithm︸ ︷︷ ︸

intractable

for 3-SAT

31 / 51

Evidence for P ⊂ NP

Consensus opinion: P ̸= NP

Because NP contains many languages that are not believed
to be in P, such as: 3-SAT and Hamiltonian graph.

Q: How to solve an instance of 3-SAT with n variables?
Exhaustive search: try all 2n truth assignments.

Q: Can we do anything substantially more clever?
Conjecture: No poly-time algorithm︸ ︷︷ ︸

intractable

for 3-SAT

31 / 51

Evidence for P ⊂ NP

Consensus opinion: P ̸= NP

Because NP contains many languages that are not believed
to be in P, such as: 3-SAT and Hamiltonian graph.

Q: How to solve an instance of 3-SAT with n variables?

Exhaustive search: try all 2n truth assignments.

Q: Can we do anything substantially more clever?
Conjecture: No poly-time algorithm︸ ︷︷ ︸

intractable

for 3-SAT

31 / 51

Evidence for P ⊂ NP

Consensus opinion: P ̸= NP

Because NP contains many languages that are not believed
to be in P, such as: 3-SAT and Hamiltonian graph.

Q: How to solve an instance of 3-SAT with n variables?
Exhaustive search: try all 2n truth assignments.

Q: Can we do anything substantially more clever?
Conjecture: No poly-time algorithm︸ ︷︷ ︸

intractable

for 3-SAT

31 / 51

Evidence for P ⊂ NP

Consensus opinion: P ̸= NP

Because NP contains many languages that are not believed
to be in P, such as: 3-SAT and Hamiltonian graph.

Q: How to solve an instance of 3-SAT with n variables?
Exhaustive search: try all 2n truth assignments.

Q: Can we do anything substantially more clever?

Conjecture: No poly-time algorithm︸ ︷︷ ︸
intractable

for 3-SAT

31 / 51

Evidence for P ⊂ NP

Consensus opinion: P ̸= NP

Because NP contains many languages that are not believed
to be in P, such as: 3-SAT and Hamiltonian graph.

Q: How to solve an instance of 3-SAT with n variables?
Exhaustive search: try all 2n truth assignments.

Q: Can we do anything substantially more clever?
Conjecture: No poly-time algorithm︸ ︷︷ ︸

intractable

for 3-SAT

31 / 51

Outline

1 Decision Problem

2 Deterministic Computation

3 Several Important Complexity Classes
P vs. NP
NP-complete

4 Randomized Computation
BPP

32 / 51

Motivation of Reduction

NP is the set of many problems.

How to figure out the relations among them?

A central approach is finding reductions

33 / 51

Polynomial Time Reducibility

Language L′ is poly-time reducible or reduces to language L,
written as L′ ≤p L, if there is a determinstic poly-time function
R : L′ → L so that:

x ∈ L′ ⇐⇒ R(x) ∈ L

R is called a poly-time reduction from L to L′.

L′ ≤p L implies L′ is not harder than L

We should pay attention to:
the direction of R
the time complexity of R

34 / 51

Polynomial Time Reducibility

Language L′ is poly-time reducible or reduces to language L,
written as L′ ≤p L, if there is a determinstic poly-time function
R : L′ → L so that:

x ∈ L′ ⇐⇒ R(x) ∈ L

R is called a poly-time reduction from L to L′.

L′ ≤p L implies L′ is not harder than L

We should pay attention to:
the direction of R
the time complexity of R

34 / 51

Polynomial Time Reducibility

Language L′ is poly-time reducible or reduces to language L,
written as L′ ≤p L, if there is a determinstic poly-time function
R : L′ → L so that:

x ∈ L′ ⇐⇒ R(x) ∈ L

R is called a poly-time reduction from L to L′.

L′ ≤p L implies L′ is not harder than L

We should pay attention to:
the direction of R
the time complexity of R

34 / 51

Polynomial Time Reducibility

Language L′ is poly-time reducible or reduces to language L,
written as L′ ≤p L, if there is a determinstic poly-time function
R : L′ → L so that:

x ∈ L′ ⇐⇒ R(x) ∈ L

R is called a poly-time reduction from L to L′.

L′ ≤p L implies L′ is not harder than L

We should pay attention to:
the direction of R
the time complexity of R

34 / 51

NP-Hard

Definition 6 (NP-Hard)
L is said to be NP-hard if for every NP-language L′, there is a
deterministic poly-time algorithm (a reduction) R:

x ∈ L′ ⇐⇒ R(x) ∈ L.

We can interpret that the languages in NP is not harder than
that in NP-hard.

Fact: languages in NP-hard may not fall in NP .

35 / 51

NP-Hard

Definition 6 (NP-Hard)
L is said to be NP-hard if for every NP-language L′, there is a
deterministic poly-time algorithm (a reduction) R:

x ∈ L′ ⇐⇒ R(x) ∈ L.

We can interpret that the languages in NP is not harder than
that in NP-hard.

Fact: languages in NP-hard may not fall in NP .

35 / 51

NP-Hard

Definition 6 (NP-Hard)
L is said to be NP-hard if for every NP-language L′, there is a
deterministic poly-time algorithm (a reduction) R:

x ∈ L′ ⇐⇒ R(x) ∈ L.

We can interpret that the languages in NP is not harder than
that in NP-hard.

Fact: languages in NP-hard may not fall in NP .

35 / 51

NP-Complete

Definition 7 (NP-Complete)
L is NP-complete if it is NP-hard, and is itself in NP .

Definition Intuition: NP-complete represents the set of hardest
problems in NP .

We can solve all problems in NP if we find an efficient
algorithm for any problems in NP-complete.

36 / 51

NP-Complete

Definition 7 (NP-Complete)
L is NP-complete if it is NP-hard, and is itself in NP .

Definition Intuition: NP-complete represents the set of hardest
problems in NP .

We can solve all problems in NP if we find an efficient
algorithm for any problems in NP-complete.

36 / 51

NP-Complete

Definition 7 (NP-Complete)
L is NP-complete if it is NP-hard, and is itself in NP .

Definition Intuition: NP-complete represents the set of hardest
problems in NP .

We can solve all problems in NP if we find an efficient
algorithm for any problems in NP-complete.

36 / 51

Theorem 8
Suppose Y ∈ NP-complete, then Y ∈ P ⇐⇒ P = NP .

⇐: Y ∈ NP-complete and thus of course Y ∈ NP . Now suppose
P = NP , we have Y ∈ P .
⇒: ∀X ∈ NP , X ≤p Y becuase Y ∈ NP-complete. Now
suppose Y ∈ P , we further have NP ⊆ P . We already know
P ⊆ NP , thus P = NP .

This theorem essentially states that if P ∩NPC is non-empty
iff P = NP .

37 / 51

Theorem 8
Suppose Y ∈ NP-complete, then Y ∈ P ⇐⇒ P = NP .

⇐: Y ∈ NP-complete and thus of course Y ∈ NP . Now suppose
P = NP , we have Y ∈ P .

⇒: ∀X ∈ NP , X ≤p Y becuase Y ∈ NP-complete. Now
suppose Y ∈ P , we further have NP ⊆ P . We already know
P ⊆ NP , thus P = NP .

This theorem essentially states that if P ∩NPC is non-empty
iff P = NP .

37 / 51

Theorem 8
Suppose Y ∈ NP-complete, then Y ∈ P ⇐⇒ P = NP .

⇐: Y ∈ NP-complete and thus of course Y ∈ NP . Now suppose
P = NP , we have Y ∈ P .
⇒: ∀X ∈ NP , X ≤p Y becuase Y ∈ NP-complete. Now
suppose Y ∈ P , we further have NP ⊆ P . We already know
P ⊆ NP , thus P = NP .

This theorem essentially states that if P ∩NPC is non-empty
iff P = NP .

37 / 51

Theorem 8
Suppose Y ∈ NP-complete, then Y ∈ P ⇐⇒ P = NP .

⇐: Y ∈ NP-complete and thus of course Y ∈ NP . Now suppose
P = NP , we have Y ∈ P .
⇒: ∀X ∈ NP , X ≤p Y becuase Y ∈ NP-complete. Now
suppose Y ∈ P , we further have NP ⊆ P . We already know
P ⊆ NP , thus P = NP .

This theorem essentially states that if P ∩NPC is non-empty
iff P = NP .

37 / 51

P vs. NP revisited

Overwhelming consensus (still): P ̸= NP .

P NPCNP

Figure: P ̸= NP

P = NP

Figure: P = NP

Why we believe P ̸= NP? Because some problems appear
significantly harder.

38 / 51

P vs. NP revisited

Overwhelming consensus (still): P ̸= NP .

P NPCNP

Figure: P ̸= NP

P = NP

Figure: P = NP

Why we believe P ̸= NP? Because some problems appear
significantly harder.

38 / 51

P vs. NP revisited

Overwhelming consensus (still): P ̸= NP .

P NPCNP

Figure: P ̸= NP

P = NP

Figure: P = NP

Why we believe P ̸= NP? Because some problems appear
significantly harder.

38 / 51

39 / 51

Outline

1 Decision Problem

2 Deterministic Computation

3 Several Important Complexity Classes
P vs. NP
NP-complete

4 Randomized Computation
BPP

40 / 51

Motivation of Randomized Algorithm

TM models deterministic algorithms.
TM does not seem to capture one aspect of reality — the ability
to make random choices during computation

Most programming languages provide a built-in RNG.
It makes sense to consider algorithms that can toss a coin, a.k.a.
use a source of random bits. Such algorithms have been implicitly
studied for a long time.

estimate facts about a large sample by taking a small sample
simulate real-world systems that are themselves probabilistic,
such as nuclear fission and the stock market
differential equations

41 / 51

Probabilistic Turing Machine

Probabilistic Polynomial-time TM models probabilistic algorithm.

. . . 0 1 1 0 1 0 . . .

random tape

. . . b b a a 1 0 . . .

input/output tape

Finite Control Unit

qi qj
action

42 / 51

PTM vs. NDTM

NDTM is a TM with two transition functions. PTM is
syntactically similar.
The difference is in how we interpret the working of TM.

In a PTM, each transition is taken with probability 1/2, a
computation that runs for time t gives rise 2t branches in the
graph of all computations, each of which is taken with
probability 1/2t. Pr[M(x) = 1] is simply the fraction of
branches that end with M outputting a 1.
In a NDTM, M(x) = 1 iff there exists a branch that outputs 1

On a conceptual level, PTM and NDTM are very different
PTM like TM and unlike NDTM, is intended to model
realistic computation devices.

43 / 51

Outline

1 Decision Problem

2 Deterministic Computation

3 Several Important Complexity Classes
P vs. NP
NP-complete

4 Randomized Computation
BPP

44 / 51

Bounded-Error Probabilistic Polynomial Time

Definition 9 (BPP Complexity)
L ∈ BPP iff there exists a probabilistic polynomial time TM M
such that:

∀x ∈ L : Pr[M(x) = 1] ≥ α

∀x /∈ L : Pr[M(x) = 1] ≤ β

Bounded-error Probabilistic Polynomial Time (weak version)
A typical choices is α = 2/3, β = 1/3. In this case, the class
of decision problems solvable by a probabilistic TM in
polynomial time with an error probability e bounded away
from 1/3 for all instances

45 / 51

Bounded-Error Probabilistic Polynomial Time

Definition 9 (BPP Complexity)
L ∈ BPP iff there exists a probabilistic polynomial time TM M
such that:

∀x ∈ L : Pr[M(x) = 1] ≥ α

∀x /∈ L : Pr[M(x) = 1] ≤ β

Bounded-error Probabilistic Polynomial Time (weak version)
A typical choices is α = 2/3, β = 1/3. In this case, the class
of decision problems solvable by a probabilistic TM in
polynomial time with an error probability e bounded away
from 1/3 for all instances

45 / 51

Reduce the Error (1/2)

In practice, an error probability of 1/3 might not be acceptable.

However, the choice of 1/3 could be arbitrary and the set BPP
will be unchanged.

It can be any constant between (0, 1/2).
It does not even have to be constant: e could be as high as
1/2−n−c on one hand, or as small as 2−nc on the other hand,
where c is any positive constant, and n is the length of input.
The idea is if the algorithm is run many times, the chance
that the majority of the runs are wrong drops off exponentially
as a consequence of the Chernoff bound.

46 / 51

Reduce the Error (1/2)

In practice, an error probability of 1/3 might not be acceptable.

However, the choice of 1/3 could be arbitrary and the set BPP
will be unchanged.

It can be any constant between (0, 1/2).
It does not even have to be constant: e could be as high as
1/2−n−c on one hand, or as small as 2−nc on the other hand,
where c is any positive constant, and n is the length of input.
The idea is if the algorithm is run many times, the chance
that the majority of the runs are wrong drops off exponentially
as a consequence of the Chernoff bound.

46 / 51

Reduce the Error (1/2)

In practice, an error probability of 1/3 might not be acceptable.

However, the choice of 1/3 could be arbitrary and the set BPP
will be unchanged.

It can be any constant between (0, 1/2).

It does not even have to be constant: e could be as high as
1/2−n−c on one hand, or as small as 2−nc on the other hand,
where c is any positive constant, and n is the length of input.
The idea is if the algorithm is run many times, the chance
that the majority of the runs are wrong drops off exponentially
as a consequence of the Chernoff bound.

46 / 51

Reduce the Error (1/2)

In practice, an error probability of 1/3 might not be acceptable.

However, the choice of 1/3 could be arbitrary and the set BPP
will be unchanged.

It can be any constant between (0, 1/2).
It does not even have to be constant: e could be as high as
1/2−n−c on one hand, or as small as 2−nc on the other hand,
where c is any positive constant, and n is the length of input.

The idea is if the algorithm is run many times, the chance
that the majority of the runs are wrong drops off exponentially
as a consequence of the Chernoff bound.

46 / 51

Reduce the Error (1/2)

In practice, an error probability of 1/3 might not be acceptable.

However, the choice of 1/3 could be arbitrary and the set BPP
will be unchanged.

It can be any constant between (0, 1/2).
It does not even have to be constant: e could be as high as
1/2−n−c on one hand, or as small as 2−nc on the other hand,
where c is any positive constant, and n is the length of input.
The idea is if the algorithm is run many times, the chance
that the majority of the runs are wrong drops off exponentially
as a consequence of the Chernoff bound.

46 / 51

Reduce the Error (2/2)

This makes it possible to create a highly accurate algorithm by
merely running the algorithm several times and taking a “majority
vote” of the answers.

Chernoff Bounds (Lower Tail): Let X =
∑n

i=1Xi, Pr[Xi] = p,
µ = E(X) = np.

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2 for all 0 ≤ δ < 1

Do the Majority Vote, i.e., set (1− δ)µ = n/2 and thus
δ = 1− 1/2p, we obtain:

Pr[X ≤ n/2] ≤ e
−n

(1−2p)2

8p

47 / 51

Reduce the Error (2/2)

This makes it possible to create a highly accurate algorithm by
merely running the algorithm several times and taking a “majority
vote” of the answers.

Chernoff Bounds (Lower Tail): Let X =
∑n

i=1Xi, Pr[Xi] = p,
µ = E(X) = np.

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2 for all 0 ≤ δ < 1

Do the Majority Vote, i.e., set (1− δ)µ = n/2 and thus
δ = 1− 1/2p, we obtain:

Pr[X ≤ n/2] ≤ e
−n

(1−2p)2

8p

47 / 51

Reduce the Error (2/2)

This makes it possible to create a highly accurate algorithm by
merely running the algorithm several times and taking a “majority
vote” of the answers.

Chernoff Bounds (Lower Tail): Let X =
∑n

i=1Xi, Pr[Xi] = p,
µ = E(X) = np.

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2 for all 0 ≤ δ < 1

Do the Majority Vote, i.e., set (1− δ)µ = n/2 and thus
δ = 1− 1/2p, we obtain:

Pr[X ≤ n/2] ≤ e
−n

(1−2p)2

8p

47 / 51

About BPP

BPP is one of the largest practical class of problems, since
problems in BPP have efficient probabilistic algorithms that can
be run quickly on real modern machines.

Clearly, BPP ⊇ P , since a deterministic machine is a special
case of a probabilistic machine.
Many problems were known to be in BPP but not known to
be in P. The number of such problems is decreasing, and it is
conjectured that P = BPP .

For a long time, one of the most famous problems that was known
to be in BPP but not known to be in P was the PRIME.

[Agrawal, Kayal, Saxena 2002]: gave a deterministic
polynomial-time algorithm for PRIME, thus showing that it is in P.

48 / 51

About BPP

BPP is one of the largest practical class of problems, since
problems in BPP have efficient probabilistic algorithms that can
be run quickly on real modern machines.

Clearly, BPP ⊇ P , since a deterministic machine is a special
case of a probabilistic machine.

Many problems were known to be in BPP but not known to
be in P. The number of such problems is decreasing, and it is
conjectured that P = BPP .

For a long time, one of the most famous problems that was known
to be in BPP but not known to be in P was the PRIME.

[Agrawal, Kayal, Saxena 2002]: gave a deterministic
polynomial-time algorithm for PRIME, thus showing that it is in P.

48 / 51

About BPP

BPP is one of the largest practical class of problems, since
problems in BPP have efficient probabilistic algorithms that can
be run quickly on real modern machines.

Clearly, BPP ⊇ P , since a deterministic machine is a special
case of a probabilistic machine.
Many problems were known to be in BPP but not known to
be in P. The number of such problems is decreasing, and it is
conjectured that P = BPP .

For a long time, one of the most famous problems that was known
to be in BPP but not known to be in P was the PRIME.

[Agrawal, Kayal, Saxena 2002]: gave a deterministic
polynomial-time algorithm for PRIME, thus showing that it is in P.

48 / 51

About BPP

BPP is one of the largest practical class of problems, since
problems in BPP have efficient probabilistic algorithms that can
be run quickly on real modern machines.

Clearly, BPP ⊇ P , since a deterministic machine is a special
case of a probabilistic machine.
Many problems were known to be in BPP but not known to
be in P. The number of such problems is decreasing, and it is
conjectured that P = BPP .

For a long time, one of the most famous problems that was known
to be in BPP but not known to be in P was the PRIME.

[Agrawal, Kayal, Saxena 2002]: gave a deterministic
polynomial-time algorithm for PRIME, thus showing that it is in P.

48 / 51

About BPP

BPP is one of the largest practical class of problems, since
problems in BPP have efficient probabilistic algorithms that can
be run quickly on real modern machines.

Clearly, BPP ⊇ P , since a deterministic machine is a special
case of a probabilistic machine.
Many problems were known to be in BPP but not known to
be in P. The number of such problems is decreasing, and it is
conjectured that P = BPP .

For a long time, one of the most famous problems that was known
to be in BPP but not known to be in P was the PRIME.

[Agrawal, Kayal, Saxena 2002]: gave a deterministic
polynomial-time algorithm for PRIME, thus showing that it is in P.

48 / 51

One-sided and Zero-sided Error

ZPP : probabilistic polynomial-time TM always returns correct
YES or NO answer, or halts with low probability, a.k.a. running
time is polynomial in expectation for every input

BPP

two-sided error

ZPP
alway correct

no error

RP co-RP
x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3

x /∈ L ⇒ M(x) = 0
x ∈ L ⇒ M(x) = 1

x /∈ L ⇒ Pr[M(x) = 1] ≤ 1/3

BPP : Monte Carlo algorithms (probabilistic) likely to be
correct in strict polynomial running time
ZPP : Las Vegas algorithms (probabilistic) are always correct
in expected polynomial running time

49 / 51

BPP in Relation to Other Probabilistic Complexity Classes

BQP (bounded-error quantum polynomial time): the class of
decision problems solvable by a quantum TM in polynomial time
with bounded error

It is the quantum analogue of BPP

50 / 51

Limits of BPP

Consensus: P ⊆ ZPP = RP ∩ co-RP ⊆ BPP ⊆ NP

P ⊆ BPP
An important example of a problem in BPP still not known
to be in P is polynomial identity testing — determining
whether a polynomial is identically equal to the zero
polynomial, when you have access to the value of the
polynomial for any given input, but not to the coefficients.

BPP ⊆ NP
Adleman’s theorem: BPP ⊆ P/poly (polynomial-size Boolean
circuits)
Karp-Levin theorem: NP ⊆ P/poly⇒ PH =

∑P
2

Thus, NP ⊆ BPP will imply collapse of PH, which is unlikely to
be true. In other words, ∄ bounded-error probabilistic algorithms
for NPC problems.

51 / 51

	Decision Problem
	Deterministic Computation
	Several Important Complexity Classes
	P vs. NP
	NP-complete

	Randomized Computation
	BPP

